FLOPPY-DISK
ATA STORAGE

Learn all about Apple and IBM disk
formatting—including copy protection!

No matter what you use your computer for, it's safe to say that
you spend a great deal of time dealing with floppy disks
and floppy-disk drives. Loading programs and saving data are
such common operations that we tend to forget how fragile the
whole system is. But all it takes is one disk disaster to remind us
of that fragility.

Of course, there are ways of protecting against those types of
disasters, and other ways of dealing with them when they do
occur. Performing regular backups is the best protection, but
even that is not fail-safe. What happens if a disk crashes during a
backup procedure?

In order to have any chance at all of recovering that data, as
well as to back up copy-protected software, you need to know
how data is stored on your disks. The more of the process you
understand, the better your chances of successfully recovering a
crashed disk. So in this article we'll examine how data is stored
on both IBM and Apple floppy disks. The information provided
will put you far on the road toward being a real “disk jockey.”

Tracks and sectors

The standard 5Y4-inch floppy disk consists of a disk of mag-
netically coated plastic that is contained in a jacket, as shown in
Fig. 1-a. In order for your computer to use the disk, it must have a
way of finding its way around the magnetic coating on the
surface. It does so by treating the disk as a group of tracks that
are divided into sectors. As shown in Fig. 1-b, the tracks are a
series of concentric circles, each of which is divided into a
number of segments, the sectors. In addition to tracks and
sectors, disks also have two sides, as shown in Fig. 2. Not all disk

ROBERT GROSSBLATT

control hardware and software can use both sides, however.

The number of tracks and sectors determines how much data
will fit on the disk. That amount is dependent on your comput-
er's hardware and disk operating system (DOS). The numbers
vary among computers and disk sizes, but the basic principles
of operation are the same.

When you tell your computer to format a disk, the hardware
moves the read/write head to track zero, the outermost track,
and then forces it to deposit information on the surface of the
disk that indicates the sector locations. The process is repeated
for each track until the last track has been formatted.

Standard 5%-inch Apple disks have 35 tracks on one side of
the disk only, and the most common IBM format has 40 tracks on
each side of the disk. Double-sided 3V-inch and 8-inch disks
have 77 tracks per side, and the ATs quad-density SVa-inch
disks have 80 tracks on each side.

DOS (IBM or Apple) uses tracks and sectors to organize the
disk’s surface. At the DOS level, to find a particular piece of
information, all you need are two pieces of information: track
and sector numbers. With double-sided disks, you must also
specify the head number,

The number of tracks per disk is usually a function of the
hardware. The DOS talks to the disk controller, which, in turn,
talks to the stepper motor in the drive and tells it to move the
head in or out the desired number of tracks.

The number of sectors, however, is controlled by the DOS.
IBM's DOS, for example, can format for eight or nine sectors per
track, but standard Apple disks have sixteen sectors per track.
So you can have more small sectors or fewer large sectors.

/861 H39W3030

w
—

RADIO-ELECTRONICS

w
(%]

DISK JACKET
2 PROTECT

HUB
RING

INDEX

HOLE

INDEX

HOLE

OPENING

NS ALIGNMENT

ACCESS SLOT NOTCHES

a

FIG. 1—DISK CONSTRUCTION: The magnetically coated disk is
contained in a jacket (a), and is formatted to contain tracks and
sectors (b).

el i INDEX HOLE

TRACK ZERO,
: SECTOR ZERO

TRACK ZERO,
- SECTOR ONE

TRACK TWO, ALK

SECTOR FIVE

SIDE ONE
SIDE ZERO

FIG. 2—BOTH SIDES of a disk are used by some disk control
hardware and software.

Disk formatting

When a track is formatted, DOS writes three kinds of informa-
tion in each sector: ID bytes, sync bytes, and gap bytes. The
exact format of those bytes differs from computer to computer,
but the same sort of scheme is used by every DOS. The reason is
that DOS must have a way of determining exactly which sector
it's looking at. Not only that, but there must be a way of ensuring
that the special formatting bytes are never overwritten by data. If
that does happen, DOS has no way to identify the sector and
the result 1s what you might expect—a crashed disk.

There are actually two kinds of ID bytes on a sector—one is
the signpost that marks the sector’s location on the disk, and the
other lets DOS know that it's looking at the beginning of the data
stored in the sector.

Figure 3-a shows a dump of an Apple DOS 3.3 sector, and Fig.
3-b shows a dump from an IBM DOS 3.1 sector. At first glance,
they both look meaningless—clearly different but equally
meaningless. Those disk formats are the two most popular, and
both the hardware and the software used to create them are

WRITE-
NOTCH

INDEX HOLE

totally incompatible. It's even more interesting, therefore, to see
that they use similar schemes to write disk data.

The ID marks on the IBM sector are written in hex on the disk;
you'll find them in Fig. 3-b at offset 00ATh. The first three bytes
(00, 00, and 01) show that you're looking at track 0, side 0, sector
1. The next byte (02) shows that the sector can hold 512 bytes.

Other sector sizes can be accommodated, as shown in Table
1. Normally, a maximum of about 6000 bytes can be written per
track, so the final entry in the table may seem questionable. On
the other hand, perhaps IBM has something up its sleeve.

The two bytes following the ID bytes contain a special error-
detecting code called a CRC (cyclic redundancy check). The
CRC is used by DOS to make sure that data read from the disk is
correct. If the CRC calculated from the data that is read from the
disk doesn't match the four CRC bytes in the header DOS
considers the data corrupt. Every time you change the datain a
sector, DOS recalculates the CRC and writes it to the disk.

«n order to keep those bytes from being overwritten acciden-
tally, DOS uses sync bytes to mark the location of the ID bytes.
When the floppy-disk controller writes a data byte on the disk, it
sends out a steady clocked stream of ones and zercs. The
Apple, for example, writes bytes to the disk at intervals of 32
microseconds. Sync bytes, however, are written at a different
interval so they re easy to spot on the disk. Apple sync bytes are
written in 40-microsecond intervals, and each sync “byte” is 10
bits long.

IBM sync bytes differ. The IBM sector in Fig. 3-b shows that
there are three bytes containing a value of A1 beginning at offset
9D. Those are the specially written sync bytes that the floppy-
disk controller uses to mark the location of the ID bytes. The
twelve 00 bytes preceding the A1 bytes are also sync bytes. You
can understand how they're used by tracing through the me-
chanics of a normal disk read.

When an IBM controller must read data, the first thing it does is
make sure that it's looking at the right sector. It starts reading data,
watching for a stream of 00 sync bytes, which lets it know that
there’s a chance that A1 sync bytes will follow. If they do, DOS
knows that the following bytes are ID bytes.

Although ID bytes are used to mark both the signposts and
your data, DOS can tell the difference by looking at the byte
immediately following the A1 bytes. If it's an FE, the ID bytes are
signposts, but if it's an FB then it's data. The amount of data is

FF FF F¥ FY
AR AE AE AF

%
S
% 9% 9
% W
9% %
% W
9% %
% W
W W
% %
% W

-
™
. s
. %
k] k]
k. 9%
£ %
- o
% %
% k.
% 9%
kY E

Fi-help Z-drive M4-data‘clock S/b-atart/ond 7/B-set start/ond S=adit 18-mil

FIG. 3—SECTOR DUMP of an Apple disk (a) and an IBM disk (b).

known because the sector size is specified in the signpost.

The last non-data byte on the disk is called a gap byte. Gap
bytes are insurance against worst-case operation. They're
needed because not all disk drives turn at the same speed, so
there’s no way to guarantee that writing a new block of datato a
sector won't overwrite existing ID and sync bytes. A disk drive
only has one head per surface, so there's no way to read and
write simultaneously As long as drive speed is within tolerance,
the DOS standards have been set so that there'’s no possibility of
destroying any of the critical bytes needed to read the sector.
On an IBM disk, the gap bytes usually have a value of 4E. Apple,
on the other hand, uses 10-bit FF "bytes.”

As for data bytes, if the sector hasn't been used, it will be
filled wath the DOS formatting bytes: IBM uses F6, Apple uses
96, and CP/M uses ES.

TABLE 1—IBM SECTOR SIZE ENCODING

ID Byte Bytes/Sector
$00 128
$01 256
$02 ' 512
$03 1024
$04 2048
$05 4096
$06 8192

TABLE 2—APPLE DISK ENCODING

(ONe Byte Volume Number = B7 B6 B5 B4 B3 B2 B1 BO
Two Byte Disk Encoding = $FFFE
= 11111111 11111110
Apple’s Encoded Format = 1B7 1B5 1B3 1B1 1B6 1B4 1B2
1BO
Decoded Binary Number = 1111 1110
Volume Number = $FE
= 254
One Byte Track Number = B7 B6 B5 B4 B3 B2 B1 B0
Two Byte Disk Encoding = $AB AE
= 10101011 10101110
Apples Encoded Format = 1B7 1B5 1B3 1B1 186 1B4 1B2 1B0
Decoded Binary Number = 0000 0110
Track Number = $06
=8
One Byte Sector Number = B7 B6 B5 B4 B3 B2 B1 BO
Two Byte Disk Encoding = $AE AF
= 101011101010 11 11
Apple's Encoded Format = 1B7 1B5 183 1B1 1B6 1B4 1B2 1B0
Decoded Binary Number = 00001101
Sector Number = $0OD
=13

Although Apple’s disk format is structurally similar to IBM,
the details are different because Apple’s disk control hardware
and software are unigue. Most disk controllers store data in un-
encoded format, so that a dump of an ASCII text file, for
example, will be comprehensible.

The Apple hardware, however, limits the values that can be
stored on disk. The high bit of each byte must be set, there can't
be more than two adjacent zero bits, and at least two adjacent
bits must be set in each byte, Some values are reserved for use
as |D bytes, and hardware restrictions eliminate many others, so
there are only 64 possible values that can be written to the disk
to represent your data.

So, in order to be able to write all 256 combinations of eight
bits, it’s clear that the data must be encoded. In fact, Apple has
gone through three major revisions of their encoding scheme.
However, that's not a subject that can be covered here; see the
books in the References sidebar for more information.

Apple format

Apple’s sector format is somewhat different. Referring back
to Fig. 3-a, the signpost ID bytes are located at offset 0013h after
the series of FF sync bytes. The signpost bytes always begin with
a prologue (DS AA 96), which serves the same purpose as the FE
marking the IBM signpost. The next eight bytes are encoded
versions of the disk volume number, track, sector, and checksum.
As shown in Table 2, by decoding them we see we re looking at
volume 254, track 6, sector 13. The checksum is calculated by
sequentially XORing all data bytes in that sector together.

Following that information is an epilogue, which can be seen
beginning at offset CO1EN. It marks the end of the signpost area
and has no counterpart on an IBM disk. The epilogue is there so
that DOS can make sure it's been reading the correct signpost
marks and that it is still in sync with the disk. They're not really
necessary, but remember that the Apple system was devised in
the late seventies when disk drives were not as reliable as they
are today,

Following another group of sync bytes comes the data bytes.
At offset 0028h is the prologue (D5 AA AD); then follow 349
bytes of data. Apple stores 256 bytes of data in each sector, but,
because the data is encoded, 342 bytes are needed to do it. A
checksum is calculated for the data and stored at the end of the
data space along with the epilogue (DE AA EB).

Sector numbering

Although sectors are numbered sequentially, often they're
not stored sequentially When DOS locks for a particular sector, it
must locate the signpost markers, read them, verify the read, and
then see if they're the ones it was looking for. All that takes time,
but meanwhile-the disk keeps spinning, so there’s a good
chance the next sector will have passed beneath the read/write
head while the previous sector was being analyzed.

4861 H3GW303d

w
w

RADIO-ELECTRONICS

F

P e S e G IR Seeue
G Lt e e G e - OADER
{SKEWED)

FiG. FLOGICAL ANI:; PH?:SICAL sector ordérs are not heceé-
sarily the same.

So, to make things more efficient, the sectors are interleaved,
or skewed, as shown in fig. 4. The inner circle indicates physical
sector numbering; the outer circle indicates logical sector num-
bering.

Disk organization

Now that we know how data is stored on the disk, the next
step is to see how it's organized. Once again, although the
details vary from computer to computer, the basic method is
the same. Let’s lock at the general principles and then see how
they're actually applied in both Apple and IBM systems.

DOS divides the disk into four areas: System, Directory, Table
of Contents, and Data. Any disk operation makes use of the
information stored in all four areas.

DOS itself is stored in the System area of the disk—the first
few tracks on the disk. The number of tracks depends on the
size of DOS and the type of computer. The very first sector on
the first track is called the boot sector and it’s used whenever
you boot a disk. It has a short machine-language program that
tells the computer how to go about loading DOS from the disk.
In addition, in some systems it contains data related to the
directory structure, disk format, and so on.

When you boot your computer, the disk controller reads the
boot sector into memory: Then the computer turns control over
to the program, called the bootstrap loader, that is contained in
that sector. Things are done that way because the controller can
read in only a sector at a time. You can read in more than one
sector at a time—but that's DOS's job. So it's a chicken-and-egg
problem: you need DOS to read multiple sectors and you can
only read in multiple sectors by using DOS. But because DOS is
located in a specific place on the disk, the bootstrap loader
knows how to transfer it to the computer’s memory:

The Directory and the Table of Contents go hand in hand. The
former is a list of the files stored on the disk, and the latter is a list
of sectors telling DOS where to find them. Every time you tell
DOS to access a particular file, it first goes to the Directory to see
if the file exists and, if it does, DOS then tums to the Table of
Contents to get the file's location on the disk.

As you might have guessed, the Data space is where DOS
stores your data.

1

IBM stores DOS in three disk files: IBMBIO.COM,
IBMDOS.COM, and COMMAND.COM. (Clones running MS-DOS
store the first two of those programs under different names.) In
order for the computer to load DOS from the disk, IBMBIO.COM
and IBMDOS.COM must be the first two files on the disk. If
they’re not, the bootstrap loader won't be able to find them,
and you'll get the infamous “NON-SYSTEM DISK OR DISK ERROR”
message. Those two files contain the routines the computer
uses to control the disk hardware. The third file, COM-
MAND.COM, is loaded after the first two and it's the part of DOS
that executes internal DOS commands (DIR, REN, DEL, etc.),
external programs, and batch files.

IBM's Table of Contents is called the FAT (file allocation table).
It's used to keep track of where each chunk of each file is stored
on the disk, which sectors are available for use, which sectors
are bad, and so on. The basic unit of the FAT is called the cluster,
and it represents a variable number of disk sectors, depending
on the operating system and on the format of the disk. For
example, single-sided IBM disk clusters are one sector long,
double-sided IBM disk clusters are two sectors long, and higher
density disks have even larger clusters.

The Directory is also located on track O, right after the FAT. It
stores the names of your files, their attributes, the date and time
they were created, their size, and the location of the file’s first
entry in the FAT. The rest of the disk is set aside for your data.
When you change anything on the disk by writing new data,
DOS must update the Directory and the FAT, because they work
together to keep your files organized.

The Apple also has a boot sector to start the process of
loading DOS into the computer. The actual contents of the boot
sector (as well as the organization of the disk) depends on
which Apple DOS you're using. Both systems, however, differ
from the IBM version in that the only job of Apple’s boot sector
IS to start the process of loading in DOS.

There are major differences in the two current Apple operat-
ing systems, DOS 3.3 and ProDQOS. Although the basic sector
formatting is the same, the organization of the disk is quite
different. The older system, DOS 3.3, stores the System on the
first three tracks, and the directory on track 11h (in the middle of
the disk). That was done, the reasoning went, because, on
average, the head would have less distance to travel to get to
the directory than if the directory had been located in track 0, as
on the IBM. Less distance means less time, so that wasn't bad
reasoning.

ProDQOS, on the other hand, has a closer resemblance to the
IBM system in that the directory is stored in the lower tracks. Disk
space is allocated a sector at a time under DOS 3.3, and a block
at a time under ProDOS. (A block equals two consecutive
sectors.) The Table of Contents is called the Volume Table of
Contents in DOS 3.3 and the Volume Bit Map in ProDOS.

Both are similar to the IBM's FAT in that each contains a table
that DOS uses to keep track of which sectors are free, which are
reserved, and which are otherwise used. Each file on the disk
reserves a track-and-sector list sector (or block) that contains a
list of the sectors where each file’s data is stored. Overall, the
Apple has to do about the same amount of housekeeping as the
IBM. It must update the directory, the table of contents, and the
track/sector list for each file you use.

Copy protection
With those facts in mind, let's examine various copy-protec-
tion schemes. But before we get into the details, let’s talk about
the philosophy behind copy protection. Both software pub-
lishers and software owners make strong arguments about pro-
tecting their investment—and they're both right. Nobody wants
to get ripped off, so publishers should be able to make money,
and owners should be able to make legitimate backup copies
of software they have purchased. Of course, there is much
continued on page 100

RADIO-ELECTRONICS

g

. +FLOPPY-DISK DATA STORAGE

continued from page 94

illegitimate software floating around, so it seems that something
has to be done about basic human nature before copy protec-
tion will cease to be an issue.

Even though there are obvious (and subtle) differences be-
tween the hardware and software comprising various types of
computers, the basic approach to copy protection is the same:
Make the disk unreadable by the standard DOS. It's easy to do
because any DOS must make a number of assumptions about
disk format before it tries to read or write information. It must
assume, for example, that it's going to find tracks formatted in a
particular way, that each one will contain a specific number of
sectors, and that those sectors will contain data written in a
predefined fashion. If any of those conditions aren't met, DOS
will throw in the towel, and, instead of data, all you'll get is an
error message. The point is that any disk that has data organized
in @ non-standard way must also have a non-standard way to
read that data,

When Appla introduced its disk system in the late seventies,
the company emphasized software rather than hardware. That
was a departurz from the norm, because most disk systems
were and are built around a single-IC LSI controller. As a result,
Apple disks were (and still are) unreadable by most other
machines. Howevar Central Point Software’s Option Board al-
lows an IBM to read Apple disks, and many others as well.

Doing moest of the'disk control in software makes it simple to

e ————————smn. S

upgrade DOS. It also makes it easy for creative programmers tQ
write copy-protection schemes that do strange things with the'
disk. That dependence on software, as we'll see, has prodeu& J
methods of copy protection that are unique to the Apple.

Non-standard data formats

There are many methods of storing data in a non-standard
format; we'll examine several in what follows. The most popular
methods are these:
® Oddball track formatting
@ Nibble counting
® Modified DOS
® Non-standard sectoring
® Unigue data encryption
® Synchronized tracks
® Quarter tracks
® Spiral tracking
Of course, there are variations on those methods, and they're
often used in combination. But attaining a good understanding
of them will help you unravel any copy-protection scheme likety
tO Come your way.

Those methods of copy protection are used on the Apple;
due to differences in the IBM’s disk-control hardware, it has
fewer means of copy-protecting a disk. For example, the IBM
cannot do quarter tracking. The most popular methods are:
® Oddball formatting
® \Weak bits
® Laser buming
We'll examine those and other means of copy-protecting soft-
ware next time D4

RADIO-ELECTRONICS

w
(=]

schemes used to make Apple and IBM software secure.

Oddball formatting and nibble counting

The first two copy-protection schemes form the basis
for most others. The basic idea behind oddball format-
ting is to format most of a disk in the usual manner, but to
format one or more sectors in a unigue manner. That way,
when DOS first starts to read the disk, it assumes one
format. When it runs into the odd sector, it thinks a data
error has occurred. However, the copy-protected pro-
gram itself knows where to expect that sector and how to
deal with it.

Nibble counting is based on the fact that no two disk
drives are exactly the same. In order for disks to be
readable on various machines, DOS has a built-in “toler-
ance” factor that programmers can use to implement
copy protection.

The major difference among drives is the speed at
which the disk rotates. The standard is 300 rpom (200
milliseconds per revolution), but a drive only has to be
within about 1% of that speed to be usable.

to
store the requisite data. The remainder of the space is
filled with gap bytes that separate one sector’s data area
from the next sector’s ID area. The number of gap bytes
written on a track is a direct function of the drive’s speed
and the rate at which the disk hardware spits out bits. But
bit timing is in microseconds and drive timing is in millise-
conds, so it's safe to say that the number of gap bytes
depends exclusively on drive speed.

The gap bytes in a particular track, called the signature
track, are counted, and the sum is stored elsewhere on the
disk. Then, when you run the program (or boot the disk),
the head is moved to the signature track, the bytes are
counted and compared to the original number. If they're
not the same, the software knows it's not running on the
original disk, and that’s what makes nibble counting tough
to crack.

Track erase, directory move

The earliest forms of Apple copy protection were
feeble by today’s standards. For example, erasing one
disk track would bring the normal copy program to a
screeching halt. And if the erased track was near the

FIG. 5—TRACK SYNCHRONIZATION involves writing data at a
particular location, stepping the read/write head, and writing
additional data.

B\

\X

FIG. 6—NON-STANDARD TRACK WIDTH is achieved by stepping
the read/write head in Y:-track increments.

outside of the disk (track 3, for example), the rest of the
disk would be protected.

Another early method was to move the catalog from
track 11, where it was normally found. The files were also
made unlistable by changing the standard load locations
so0 you couldn’t even look at the files. A reset would wipe
out memory and reboot.

Those tricks, and a few others, were attempts to pro-
tect programs by altering DOS. They were effective for
awhile because no one had taken DOS apart yet, so DOS
parameter locations, sector formats, and file structure
weren't common knowledge. After those things became
known, however, the simple copy-protection schemes
were dropped in favor of more-sophisticated ones.

The 36th track
When the copy-protection industry was in its infancy,
someone discovered that, although DOS was designed

around 35-track hardware, most Apple drives could actu-
ally read 36 tracks. That was the first time the disk hard-
ware itself was used as the basis of a copy-protection
scheme. Publishers put part of their code on track 36 and
checked to make sure it was there whenever the program
was run. None of the standard copy programs knew
anything about the extra track so the disk was uncopya-
ble—until the method was found out and publicized.
Even without the discovery, use of the 36th track was
ineffective because not all drives could read that track.
So, as soon as consumers started retuming software, the
method was dropped.

Track syncing

The next type of copy protection can be understood
by looking at Fig. 5. When data is either read from or
written to a disk, DOS is told to go to a specific track and
then look at a particular sector; no special relationship is
assumed between adjacent tracks. However, software
publishers discovered that it was possible to keep very
strict timing relationships when reading the disk. This
meant that if you knew where you were on one track at the
instant you told the head to step, you knew where you
would be when you arrived at the next track.

Building a protection scheme around that fact involves
writing a program that reads a track, steps the head when
a particular data pattern is found, and then immediately
writes some data to the new track. You now have a disk
with known data patterns written in a particular order on
adjacent tracks. If you change the write to a read and
don'’t find the data pattern you originally wrote there, you
know that it’s not the original disk.

Playing With Apple DOS

The ways in which you can “customize” DOS are limited only by
your imagination. After all, DOS is just another program. Here are a
few suggestions on how you can change the internal workings of
DOS to provide a measure of copy protection to your own disks.

Normally DOS reads your keyboard commands and tries to
execute them. However, by patching in your own routine, you can
cause DOS to do just about anything. Location $9FED is a good
patch point. In an unmodified DOS, you'll see the following code:

9FED 59A4A8 EOR $A884,Y

That is the beginning of the code that parses the input line before
going into the command table. Here are several ways to patch that
code. First, by causing a jump to $C600, any input line will cause
the machine to reboot:

9FED 4C00C6 JMP $C600

This line will cause any input line to jump to BASIC:!
9FED 4C03EO JMP $E003

This line will cause any input line to beep and go into the monitor:
9FED 4C 65 FF JMP $FF65

This line will cause any input line to beep and print “ERR"™:
9FED 4C2DFF JMP $FF2D

DOS has both warm and cold boot routines, and it can tell which
one is required by looking at the byte stored at location $03F4. if
you change the value in DOS, you'll force a cold boot whenever the
reset switch is pressed. Normally DOS has the following code:

9E36 49 AS EOR #$A5

By changing the A5 to a 00, you'll be able to initialize a disk witha |
DOS that will reboot whenever reset is pressed.

8861 AHVNNVI

L-]
-

RADIO-ELECTRONICS

w0
L]

FIG. 7—A “SPIRAL” TRACK organization is achieved by offset-
ting alternate tracks or groups of tracks.

&

LASER-INDUCED
IMPERFECTIONS

FIG. 8—A LASER-BURNED DISK can be backed up, reformatted,
and the copies restored—and the copy-protection is still intact.

Using synchronized tracks became extremely popular
Publishers liked it because it was easy to implement and,
at the time, none of the existing copy programs could get
around it. Of course, that didn't last long. Most current
copy programs can write synchronized copies, so that
tracks on the copied disk are arranged in the same order
as those on the original disk.

Quarter tracking

All of the copy-protection methods we've discussed
so far are techniques that can be implemented from a
regular DOS. Apple made their disk system very software
intensive, so programmers have much control over the
disk hardware. As more and more became known about
DOS, programmers found new and sometimes bizarre
ways to make their disks unreadable by normal methods.

Some unknown hero in the copy-protection business
discovered that Apple DOS didn't actually move the

read/write head an entire track at a time, only a quarter ¢f a
track at a time. Being able to step between tracks seems
useless because data must be at least one track apart for it
to be read reliably by the computer. The problem is
crosstalk—exactly the same sort of problem that crops up
in audio and video tape. If the guard band is too small, or
if the recorder’s heads are out of alignment, the head can
read from two tracks at the same time.

The secret lies in the fact that, although tracks must be
separated by at least a whole track, they can also be
separated by more than that. A disk using that method is
shown in Fig. 6. Track zero is in the correct position, but
there’s a track and a quarter between it and track one. The
next three tracks are one track apart, but then we have a
gap thats one and three quarters of a track wide. The
remainder of the tracks are separated by one whole track.

It doesn't take much to see that some of the data on the
disk is going to be inaccessible to a normal DOS. It will be
able to read track zero and the tracks from five to the end
of the disk. But when DOS tries to read the odd-spaced
tracks, the head won't be positioned over the center of
the track, so the signal will be weak. Signal-to-noise
problems guarantee that, although some of the data might
be read correctly, a good part of it won't. The result is a
disk unreadable by any DOS that doesn't know exactly
how each track is positioned on the disk.

Writing quarter tracks on a disk requires careful atten-
tion to timing details. The stepping rate of the head must
be carefully controlled, as does choosing the moment at
which data can be read. Many disk drives, particularly
older ones with slower stepping rates, have trouble read-
INg a disk with quarter tracks. The problem is more pro-
nounced with tracks that are written near the perimeter of
the disk, because the disk turns with a slightly faster linear
velocity there.

Spiral tracking

Next, the software industry developed the idea of
spiral tracks, which solved the problem of wasted disk
space, and made it even more difficult to make copies.
Figure 7 is a representation of a disk with spiral tracks. You

LISTING 1

10 PEM *eskdkswnkkadhnhbdmdhndhnn

15 REM * THIS PROGRAM WILL LFT *

26 REM * YOU MOVE THE LOCATION *

25 REM * THAT DOS USES FOR THE *

3¢ REM * CATALOG TRACK. *

35 m L s L T s

49 :

50 OLDTRACK = PEEK (44@33)

90 TEXT : IDME

10@ PRINT “THF CATALOC IS NOW ON TRACK ™;OLDTRACK
118 PRINT

126 INPUT "WHAT IS THE NEW CATALOG TRACK? ";YOURTRACK
125 VTAB §: HTAB 1

138 IF YOURTRACK<3 OR YOURTRACK>35 THEM PRINT CHRS(7): GOTO 588
14@ :

145 REM PATCH THE FILE MAMAGER

150 POKE 44033, YOURTRACK

160 :

165 REM PATCH THE INIT ROUTINE

178 POKE 44703, YOURTRMCK: POKE 44764, YOURTRACK

180 :

185 REM PATCH THE CATALOG ROUTINE

19¢ POKE 46812, YOURTRACK

200 :

21@ PRINT "YOU CAN NOW INITIALIZE A DISK THAT HAS"
215 PRINT "FILES UNREADABLE BY A NORMAL DOS."

228 END

500 INVERSE : VTAB 24: HTABE 1

510 PRINT “THE NEW TRACK MUST BE BETWEEN 3 AND 35";: GOTO 125

. LISTING 2
BOR4 ' CRE7 59 DEC $59E7
59E7 CF 22?
S9ES EA NOP
5989 59 EF EA FOR SFAFF,Y
59EC 59 AD 51 EOR $51AD,Y
59FF C@ AD CPY #SAD
SoFy . 544 ?2?
50F2 C@ AD CPY #$SAD
59F4 57 222
59F5 CA AD CPY #$SAD
59F7 g 222
59F8 cOo 20 CPY #$20
59FA 60 RTS
SoFB. " SBo. . 2?22
S9RC . 28:C5 5B JSR $5BC5
59FF 20 4E 5B JSR $5BAL
5A02 A9 04 LDA #$04
5A04 8D EC B7 STA $B7EC
5A07 A9 00 IDA #$00
5AZ9 8D EB B7 STA S$B7EB
SAGC A9 00 LDA #5900
SAQE - 8D F¢ B7 STA $B7F0O
5A1l A9 68 LDA #560
S5A13: 8D'F1 87 STA $R7F1
SAl6 A9 40 LDA #$40
5a18 20 45 5A JSR $5A45
SA1B 10 01 BPL $5Al1E
SAlD A9 20 LDA #820
SALF 91 5A STA (S5A),Y
5821 AD 50 C0 LDA $CO58
5A24 . A9:09 LDA #S09

can see that it meets the track-spacing requirement and
that it makes maximum use of disk space. Trying to copy a
disk like that can result in major brain damage. Not only do
you have to know the track spacing, but you also must
have the correct pattern.

There are two reasons why spiral tracks are a real
problem for a copy program. The first is simply that it's
hard to tell how many sectors have been placed on a
particular track. The second more serious problem has to
do with the nature of copy programs. We've already seen
that there are so many ways to protect a disk that a good
copy program can't make any assumptions about what it's
going to find when it reads the disk. The more it expects
to find, the less it will be able to deal with what's really
there.

Let’s suppose that you've just bought Acme Copy, the
roughest, toughest, smartest, copy program in the
world—it's so good it can even copy an unformatted
disk—and you use it to make a copy of a spiral-tracked
disk. You load the program and tumn it loose. Even though

track zero is written upside down and backwards, Acme
Copy copies it without a hitch. Let’s also suppose that the
rest of the disk is spiral tracked; only half of the sectors on
each track contain real data. Acme Copy doesn’t know
anything about that—no assumptions, remember?

Acme Copy reads in a track, half of which is data and
half of which is garbage—and that’s where the problem
comes in. There is no way for the program to distinguish
garbage from copy-protected data. It reads the track’s
data, does some sort of analysis, writes out the copy, and
steps to the next track. Of course the copy will be
worthless. Even if Acme Copy goes through the disk
quarter track by quarter track, the act of writing a quarter
track will undoubtedly corrupt the previous quarter track.
It's sad but true that the only way you can get it to work
properly is to tell it what spiral pattern to follow as it goes
through the disk.

IBM copy-protection
Most of the Apple protection methods we've looked

at have their counterpart in the IBM world. Modifying
DOS and messing around with sector information were
done early on in PC history—and neither method lasted
any longer there than in the Apple world. Most IBM copy
programs can deal with those methods without even
working up a sweat.

However, some of the more imaginative copy-protec-
tion methods found on the Apple simply couldn't be
ported over to the IBM because of the basic difference in
their disk systems. The PC’s designers decided to let most
of the disk system be handled by an LSI controller IC. That
made it simpler to develop DOS, because the controller
has built-in routines to handle disk primitives like moving
the head, reading and writing data, formatting, and so on.
The ability to do quarter tracking, for example, is impossi-
ble because the controller hardware can only step the
read/write head in full-track increments. In fact, because
of the limited repertoire of commands built into the
floppy-disk controller IC, just about the only trick that
appeared had to do with the index hole.

Contrary to popular belief, the IBM only uses the index
hole when formatting a disk. Every time the head is
stepped out to a new track, the PC waits for the index hole
to appear and uses that point as the starting point for
formatting the track. After a disk has been formatted,
particular tracks and sectors are located using the same
method as the Apple. The floppy controller reads in the
sector address of its current position and then steps in or
out to the track DOS wants it to read.

Some protection methods want the track-splice point
(the place where start and end points meet) to be exactly
at the index mark. As with any protection method,
however, this one only baffled copy programs for awhile.
After the method was uncovered, it wasn't long before
most copy programs could handle it.

Undocumented op-codes

IBM's floppy controller is an NEC PD765, which is really
a microprocessor that has been optimized to handle disk
drives. Some programmers disassembled the microcode
in the IC looking for features and abilities that didn't
appear in the documentation.

Several undocumented features were found, the most
popular of which was to mix FM (frequency modulation)

8861 AHVNNVI

w0
(<]

© RADIO-ELECTRONICS

and MFM (modified frequency modulation) formatting
on one track. None of the copy programs were able to
handle that mixed formatting, because they didn’t know
how to make the PD765 do the trick. The result was a
nearly unbeatable protection scheme.

However, there are two big problems with undocu-
mented op-codes. The first is that the manufacturers who
second-source the IC don’t know about them. The sec-
ond is that, because they aren’t part of the 765's pub-
lished vocabulary, there’s no way to guarantee they'll still
be there when new versions of the IC are released. And
that’s what spelled the death of mixed formatting on the
IBM. The software ran well on computers that used the
same run of 765's, but died on other machines. Needless
to say, the scheme was dropped.

Other methods

The search is always on to discover new and wonderful
ways to lock up disks. The older, software-only methods
such as altering DOS or playing around with sector for-
matting and address bytes, are still used because they're
inexpensive and easy to do. They're usually found on
games and other low-priced software. Even though most
copy programs know how to deal with them, some are
still hard to beat, particularly nibble counting.

The publishers of more expensive software, however,
have deep enough pockets to be able to afford more
expensive protection schemes. There are two major high-
end methods for protecting disks. Both are expensive
because it takes more than just changing a few bytes to
get them on a disk. The first involves what are called
“weak bits,” sectors written in such a way that they don't
read the same way twice. All that's needed to activate
weak-bit protection is to do two successive reads. If
they're the same, the software knows it's running on a
copy and can take appropriate action. Gefting a sector
like that on a disk involves the use of special duplicating
equipment; it can't be done with a stock PD765.

Just as weak bits make the disk unigue from a format-
ting point of view, laser holes make it unique from &
physical point of view. The word hole is misleading
because the disk isn’t actually punctured, but burneg,
usually in two different places. The photograph in fig. 8
shows what to look for if you suspect that the disk you're
trying to copy has that kind of protection. The marks are
usually located on the back side of the disk near the hub.
It's easy for the software to check for the laser holes,

Laser-treated disks are probably the most expensive
form of copy protection, but they have one big advantage
for a publisher. Because the disk is physically unique, the
publisher doesn't have to protect the files and can let you
back them up on a regular disk. If you develop an error on
the original disk, you can reformat it and copy the files
from your backup. Remember that reformatting the disk
has no effect on the laser holes. However, most copy
programs can even get around laser-treated disks.

Because of the ease of overcoming most disk-based
schemes, state-of-the-art copy protection these days is
the hardware lock. It's a device that plugs into your serial
or parallel port and remains totally transparent (in theory,
at least) to the normal operation of the port. Software can
check whether the device is present at various times
during execution, and come to a screeching halt if it
doesn’t get the proper response.

References

Books (Apple): Beneath Apple DOS, Don Worth &
Pieter Lechner, Quality Software, Computer Book Division,
21601 Marilla Street, Chatsworth, CA 91311, (818)
709-1721. Beneath Apple ProDOS, Don Worth & Pieter
Lechner, Quality Software (address above).

Books (IBM): The Programmer’ Guide to the IBM PC,
Peter Norton, Microsoft Press, Dept. RC06, Box 97200,
10700 Northup Way, Bellevue, WA 98009. Advanced MS-
DOS, Ray Duncan, Microsoft Press (address above).

Hardware (IBM only): The Copy Il PC Option Board,
Central Point Software, 9700 SW Capitol Highway, Suite
100, Portland, OR 97219, (503) 244-5789.

Software (Apple): Locksmith 6.0, Alpha Logic Busi-
ness Systems, 4119 North Union Road, Woodstock IL,
60098, (815) 568-5166. Copy /I Plus, Central Point Soft-
ware, (address above). Bag of Tricks 2, Quality Software
(address above). Disk Repair Kit, Penguin Software, 830
4th Avenue, PO. Box 311, Geneva, IL 60134, (312)
932-1984.

Software (IBM): Copy Il PC, Central Point Software
(address above). Master Key, Sharpe Systems, Corp., 2320
E. Street, La Verne, CA 91750, (714) 596-0070. CopyWrite,
Quaid Software Limited, 45 Charles Street East, Depart- -
&ﬁ'ﬁé;fg? Third Floor, Toronto, Ontario M4Y 152, (416)

However, hardware locks are very expensive, so it’s
unlikely you'll see one protecting inexpensive software.
Can a hardware lock be beaten? The answer is yes—sort
of. The qualifier is there because, no matter what kind of
protection scheme is employed, it only protects the disk,
not the data. All the fancy tricks that have been used to
lock up the software fall away when the program is
loaded into the computer. '

Your own copy protection

Several of the books mentioned in the References side-
bar contain complete discussions and disassemblies of
various versions of Apple DOS. By studying that informa-
tion, you'll see that there are several ways to alter DOS and
add simple copy protection to your own disks. DOS
commands can be changed (or eliminated altogether), or
your own code can be inserted in one of the unused
areas of DOS. Then, when your program goes looking for
it, if the code is there, the program will run normally: If it's
not there—well, the choice is yours. You could be kind
and just reboot the system, or you could be nasty and
trash a couple of tracks.

If you're interested in playing with a modified disk
organization, initialize a spare disk and run the program
shown in Listing 1. It will create a diskette with the catalog
located in @ non-standard location.

To create a custom version of DOS, you can play with
the ideas shown in the sidebar entitled Playing With DOS.
However, just remember that those are fairly simple
schemes, and they’ll be no real obstacle to someone
whose primary mission in life is to get a look at your code.
The kinds of things you can do by messing around with
DOS are the things a real “crack-ist” eats for lunch.

continued on page 102

FLOPPY-DISK DATA STORAGE
continued from page 94

Breaking copy protection

Copy protection—both making it and breaking it—is
big business. There are two fundamental ways to get
around copy protection. The first is to buy a program that
knows how to copy protected disks. If you're lucky; it will
know how to make sense of the particular protection
scheme(s) used on your disk and will be able to copy it
with no muss and no fuss. But the price you pay for that
kind of mindless copying is that, if the program can't copy
the disk, there isn't a thing you can do except try some
other copy program.

The second method is to use some disk tools to snoop
through the disk and remove the copy protection yourself.
As with most things, each method has advantages and
disadvantages. The method you choose depends on
how good your tools are, how well you can use them,
how much you know about your computer, how much
time you want to spend, and how badly you want to
make the copy.

There’s simply not space to go into the details of how
to break copy protection; it's an art in itself. Basically, it
involves spending endless hours at a totally unnatural act:
staring at and trying to decipher page after page of
undocumented object code. Unless you've actually done
it, there just aren’t any words to describe the amount of
work involved.

One reason is that the code you'll be looking at proba-
bly was written to be confusing. The code in Listing 2 is a
perfect example. Go through it and see whether you can

understand what's going on. It's real code from a popular
Apple game. There are no tricks here, either. It’s just that
things aren’t what they seem to be. The real meaning (and
the real code) is hidden. If you figure it out, drop us a
note. And if there’s enough response, we'll take up the
subject of copy breaking in another article.

If you want to leam about the in's and out’s of copy
protection, you'll have to get familiar with the normal
workings of the standard DOS used by your computer.
Read the books mentioned in the References sidebar, and
follow their tutorials. Those books won't tell you how to
break copy protection, but they’'ll give you the basic tools
you need to do so.

If you just want to back up your copy-protected (IBM)
software, try the Option Board from Central Point Soft-
ware. It's the ultimate tool for dealing with disks on a bits-
and-bytes level, and it also helps copy “un-copyable”
software. All the screen dumps in this article were pro-
duced using the Option Board, which also reads disks
formatted on just about any computer, including IBM, CP/
M, and even the Apple! That's a major accomplishment—
especially for a $100 piece of hardware.

You'll also find a list of some good copy programs in
the References sidebar; you should have some of them in
your library even if you don't need to copy protected
disks. Whenever you get a floppy-disk data error, chances
are what has happened is that at least one sector was
written incorrectly. All it takes is one bad bit in a header
and the sector will be unreadable by DOS. If the damage
is in the directory, you'll be unable to access any of the
data and will be faced with the thankless job of trying to
reconstruct your files. The point is that many programs
capable of dealing with protected disks can deal with
damaged disks as well.pD4

XT TO AT UPGRADE

| recently upgraded my com-
puter from an XT to an AT
clone, and there seems to be
some sort of problem with the
disk drives. Whenever | try to
read a disk from the AT on my
XT, | get one of two kinds of
errors. The most common one
is that lots of read errors show
up, but occasionally | can't
read the disk at all. | can't even
get a directory to show up on
the screen. What's going on?—
F. Scher, Amsterdam, NJ

You haven't given me all the par-
ticulars of your computers, but | can
make a good guess as to the source
of the problem. The chances are that
you got your AT with a 1.2-MB 5%
inch drive and your XT has a 360K
drive. The two drives look very much
alike on the outside, but there's a big
difference internally. In order to un-
derstand what's causing your first
problem, let's talk a bit about the
basic difference between the drives.

The original 360K floppies have
two sides with 40 tracks each, and
each track has nine sectors. The 1.2-
MB disks were organized a bit dif-
ferently to get the increased amount
of storage. The high-density disks
have 80 tracks on two sides, and
each track is divided into 15 sectors.
Since you've got twice as many
tracks and 60% more sectors, you
can store more data on the disk. If
you do the arithmetic, you'll see that
the numbers work out correctly.

It makes sense that something had
to be done to the original drives to
allow them to hold so much more
information. And it's what was done
to the drives that's causing both of
your problems.

Disk drives are essentially the
same as tape recorders. They have a
read/write head, and they record in-
formation on magnetic media (the
disk surface). When the number of
tracks was doubled, the distance be-
tween tracks was halved (makes
sense), and doing that increased the
chances of crosstalk between the
tracks.

The problem was solved by reduc-
ing the write current on high-density
drives. Since the signal was much
lower, the unwanted noise from near-
by tracks was reduced. In order to
read the desired tracks, however, the
read gain was also increased. The
system worked well (and still does),
but it was necessary to change the
composition of the recording medium
in order to make the system reliable.
There’s a real, physical difference be-
tween 360K and 1.2-MB disks, and
each can only be used forits intended
purpose.

If you want to use a 1.2-MB drive to
write to a 360K disk, you have to use
a disk made for 360K operation. Both
the number of tracks and the number
of sectors can be changed in soft-
ware. When you issue the command
FORMAT A:/4, you're telling the soft-
ware to make the head put forty
tracks and nine sectors on the disk—
you'll be formatting a 360K floppy
disk.

What's causing your problem is
that while the software can force the
drive to do the correct number of
tracks and sectors, it can't do any-
thing about the write current—that's
an internal adjustment on the drive
and the software can’t do a thing
about it.

When you write a 360K disk on a
high-density drive, the information is
going to be correctly organized on
the disk but the recorded level will be
very low. Since the 360K drive has its
read gain set for a higher recorded
level, the drive often has trouble read-
ing the disk and that's the first prob-
lem you're having.

The second problem you're hav-
ing—not being able to read the disk at
all—is probably because you're trying
to read a 1.2-MB floppy in the 360K
drive. That can't be done at all.

The solution to your problems is
through hardware, and the cheapest
way to do it is to add a 360K drive to
the AT. Adding a 1.2-MB to your XT
will undoubtedly mean you'd need a
new disk controller as well, and
there's no reason to spend the extra
cash.

"~ WRITE-
PROTECT
NOTCH
BY-PASS

You paid for both sides of your disks.
Here’s how to use both sides.

NOEL NYMAN

m|f you own a single-sided floppy disk drive, you may
have read that the opposite side of your diskettes can
also be used to store data and programs. During
manufacturing, all disks are tested for data recording
integrity on both sides. Those not meeting
manufacturer’s standards on one side are packaged as
single-sided disks.

Using the uncertified “backside” of disks isn't
recommended for valuable data or for disks that will
be read frequently When you flip a disk over, the
cleaning material inside the jacket may release particles
of dust and oxide to the disk surface and corrupt your
read/write head. Dual-sided drive owners don't have
this problem: their disks turn in one direction only.
However many computer owners use this technique
for archival or back-up disks which are read
infrequently.

To write on a disk, the write-protect notch must be
uncovered. On a single-sided disk, there is no write-
protect notch for the back. Special punches are
available that will cut a neat, square notch. Most users
prefer to use a conductor’s punch or a scissors. Using
any of those methods may damage the disk jacket or
warp the disk itself.

How it works

Here’s how to modify your drive to electronically
bypass the write-protect circuitry. We'll use the
Commodore 1541 disk drive in our example, but the
same idea should be adaptable to Atari drives or any
other disk drive that doesn't use the small timing hole
near the disk’s center.

In most disk drives, the write-protect notch is sensed
optically. An LED is mounted opposite a
phototransistor with the write-protect notch lined up
between them when the disk is inserted. If the notch is
uncovered, the light from the LED causes the
phototransistor to conduct.

On the Commodore 1541, this brings the write-
protect line low (ground potential or near zero volts)
and signals the drive circuitry that the disk can be
written to.

If & write-protect tab is in place, or there is no notch
on the jacket, the light path is blocked and the

12 ComputerDigest — JULY 1985

SMALL CIRCUIT BOARD with IC, switch and resistor all in
place illustrates the simplicity of this circuit. It allows you to
write to both sides of the disk with no need for punching
holes.

transistor does not conduct. This leaves the write-
protect line high on the 1541 and the drive will not
write to the disk.

To bypass the circuit, hold the write-protect line low
by shunting the phototransistor with a resistor. This is
easy in most drives since the phototransistor is
mounted on the drive mechanism and the leads from it
plug into the circuit board. No changes are required on
the circuit board itself.

Be careful!

You may want to wait until the warranty expires
before attempting any modification. If possible, obtain
a schematic of your drive from a dealer or repair
service. The drive circuits use CMOS chips which can
be damaged by improper handling. Use normal CMOS
precuations when working around the circuit board.

First unplug all cables, then remove the top cover
from the Commodore 1541 by loosening the four
mounting screws accessed through holes in the bottom
cover. Remove the metal shield that covers the circuit
board. Two screws on the left side secure the shield.

Look for the largest plug, labelled “P6” on most
boards. It is a 15-pin plug but only a few wires are
connected. Counting from the back of the drive, locate
pins 12 and 13. These are the wires coming from the

A i 8 . ' . TO WRITE PROTECT

. A - PHOTOTRANSISTOR
. <RI
- 22K (SEETEXT)
: > TO WRITE PROTECT
PHOTOTRANSISTOR

FIG. 1—IN ITS SIMPLEST FORM, the schematic above uses
only a switch and resistor.

phototransistor.

To make sure you have the right wires, carefully bare
the insulation near the plug and connect a voltmeter or
logic probe to them. Pin 13 is the negative or ground
side. Plug in the power cord and turn on the drive. Be
careful not to touch the circuit board while the power
cord is connected. The voltmeter should read near
zero volts.

Put a disk part-way into the drive so the write-

protect area is blocked. The voltage should increase to
almost three volts, a TTL logic one or high. If you get
these readings, you have the proper wires.

Figure 1 is a diagram for installing a switch and
resistor to bypass the phototransistor. A 2K resistor (R1)
worked on the drives we tested, but you may have to
try values between 1K and 2K to get reliable operation.
Do not simply short the two wires together, as this
might damage the phototransistor or other circuit
components. If you mount the resistor directly to the
switch, no separate circuit board or stand-offs will be
required to hold it.

- Additional circuitry

Although this simple modification will allow you to
write to the uncertified side of the disk without
punching notches in it, we recommend the circuit
shown in Figure 2. This will flash the green “Power On”
LED whenever the write-protect bypass switch is
turned on.

We used the LM3909 (IC1) because it provides a
bright LED flash at low voltage. This lets us use the 2
volts available at the green LED's plug directly with no

RED WIRE FROM 5 6 _TORED
CIRCUIT BOARD — | LED WIRE
Ic1 1,8
K. c1
BLACK WIRE » ’ 470uF
FROM CIRCUIT —»
BOARD
52 TO BLACK
o LED WIRE
I
TO WRITE - 1
PROTECT

PHOTOTRANSISTOR =

R1
2K (SEE TEXT)

FIG. 2—MORE ELABORATE CIRCUIT is still not complicated,
but accomplishes a great deal more. Resistor R1 might have
to be changed. See text.

changes on the drive circuit board. Cut the red and
black wires g0ing to the green LED and connect them
as shown in the schematic. You may want to use plugs
and sockets to connect the circuit to the drive so you
can remove it if you need to have your drive serviced.

Any double-pole, double-throw switch will work,
but select one that will fit into the case past the drive
chassis before you start punching holes. The switch we
used is a miniature toggle that can be located almost
anyplace. A slide switch might have been more
compact, but would have required additional holes.
The circuit board we used fits nicely in front of the
“short” circuit board used in the newer 1541 drives and
can be bolted to the unused circuit board mounting
tab.

Once the switch and LED flasher are in place, test by
trying to SAVE a program to a disk with a covered
write-protect notch. With the switch in the on position,

the green LED should flash and the program will SAVE
to the disk.

Avoid confusion

You should turn the switch on only when you SAVE
to or format a disk with no notch. If the switch is left
on, your drive can get very confused and give you
strange errors. To illustrate this, turn the write-protect
switch off, put a disk with an uncovered notch in the
drive, and type the following in direct mode
(Commodore only):

OPEN2,8,2,"X,S,W"

This tells the drive that we're about to write
information to a sequential file we've called “X.” The
red LED should come on and stay on, indicating that a
data channel is open to the drive. Now remove the
disk from the drive. The red LED will go out. The drive
“knows” that you've removed the disk and that the data

PARTS LIST
IC1—LM3909 LED Flasher
R1—2000 ohm, % watt resistor
C1—470uF Electrolytic Capacitor
S1—SPDT Toggle Switch
S2—DPDT Toggle Switch
Circuit board, plugs and mounting hardware

channel shouldn't be held open.

Type: CLOSE2
To get rid of the open file in the computer, then try the
same experiment with the write-protect switch on. This
time, the red LED does not go out! The disk drive uses
the high-to-low transition of the write-protect line as
the back of the disk crosses the light path to tell that
you've removed a disk. With the write-protect switch
on, this line is held low and the drive doesn't see any
change. If you change disks in this way, you will have
difficulty LOADINg files on the first try. More important,
if you SAVE to the second disk, you may overwrite
important data or programs because the drive will use
the Block Availibility Map of the previous disk.

Properly used, the write-protect switch will give you
access to the back of your disks without the need for
expensive punches or danger of damage. It also gives
you a measure of security since there's no telltale notch
to indicate that anything has been recorded on the
back.

Using the electronic circuits shown here, you can
write to the back of the disk at your own volition; you'll
find this a great convenience if you haven’t had this
facility before. It effectively doubles the capacity of
your disks.

However, it's always a good idea to mark or number
your disks so you'll know which disks are written on
both sides, and what information is contained on the
backs. A separate sheet or ledger can be maintained as
a menu so you can quickly and easily locate the
information you require at any given time. You might
also want to carefully clip one comer of the disk
envelope 5o you can easily tap out any collection of
oxides and/or debris that might accumulate in the
envelope and possibly foul your heads. <4@p>

JULY 1985 — ComputerDigest 13

ADDENDUM TO CARING FOR DISKETTES

In preparing for publication the article “How
to Care for Diskettes,” in the November 1978
issue, one page of the original manuscript
was inadvertently omitted. As a result, some
additional information is necessary to clear
up some misconceptions that may have been
created due to the omission.

In small diskette systems, the type most
popular with computer hobbyists, the actual
diskette rotates within a protective jacket. Af-
ter the diskette is loaded and the loading door
closed, the intemal mechanical arrangement
forces a pressure pad to “squeeze’ the flex-
ible diskette to the head. In a sense, this pro-
duces a “dimple” in the relatively soft diskette
at the point of contact.

Depending on the diskette and drive used,
the relative head-to-diskette speed can reach
about 8 mph. Thus, if there are any scratches
on the head or it any foreign substance gets
on the diskette so that it is forced between the
head and the soft diskette surface, minute
physical grooves can be cut creating data
dropout. Figure 2, shown for what is called a
“flying head” disk system, dramatically illus-
trates how foreign matter on the surface can
create data loss on the disk.

During diskette operation, the pressure
pad on the other side of the diskette “scours”
the surface. It is possible for the pad to ac-
cumulate a layer of relatively hard dust, or
even minute (metal) oxide particles scraped
from the diskette—in most cases, even
though only one side of a diskette is used,
both sides are coated with magnetic oxide.

After some hours of use, the tiny hard parti-
cles adhering to the pressure pad can scratch
the diskette surface. If the other side of the
diskette is to be used, the rotation is then
“backwards,” which can cause surface dam-
age and result in loss of data. It is probably
for this reason that no small diskette drives
use both sides of the diskette.

It should have been stated at the beginning
of the “Foreign Matter” section that the me-
chanical data was for a large disk system
whose diameter and drive speed are much
higher than those of a small diskette. Thus
the rpm is much higher. However, the infor-
mation on the damage that can be caused
by foreign matter— including smoke parti-
cles, dust, and grease—holds true for all
diskettes.—Les Solomon, Technical Director.

n

- T

MICRO-
FLOPPY

i

i

Retrofit your PC or XT with a 3%4-inch disk drive.

HERB FRIEDMAN

If You use an IBM PC or clone, you may be underwhelmed by all
the fuss being made about 3%-inch disks However many porta-
ble computers, and all of IBM's new line of PC’s, use 3%-inch disks
(See “Editor's Workbench" for reviews of two of the new PC's) The
small diskettes have many advantages over the 5%%-inch disk you're
used to using, including:
® Increased capacity (two to four times that of a standard 360K
floppy disk)
® Greater reliability, because each disk is completely enclosed by
4 hard plastic shell
® Smaller, shirt-pocket size

5¥-inch disks are by no means obsolete, but chances are that the
Industry will move steadily toward use of 3%-inch disks, just as 8-
inch disks were gradually supplanted by §Vi-inch disks. So in this
article we'll show you how to retrofit your computer to use 3 -INCh
disks. Then you'll be ready to handle the upcoming new wave of
software and data. We'll discuss installation of IBMS mode]
2683190 disk-drive retrofit kit for PC and XT model computers
Similar kits are available from clone manufacturers, but installation
may differ, so your drive’s instructions carefully

What it is
The retrofit kit consists of a cabinet-mounted 3/4-inch disk drive
with attached signal and power cables, a Y-adapter that lets you tap

RETROFIT

FIG. 1—THE CABLE FROM THE 3'4-inch drive has its own power
connection take-off that matches the miniature power socket on
the supplied Y-adapter. The ring through which the adapter's
power wire loops is a toroid choke that help suppress RFI.

power from your computer’s internal disk-drive power connector
(shown in Fig 1), and a kit of three pre-punched metal brackets

4861 1SNONV

=]
~

RADIO-ELECTRONICS

[=1]
(-]

(shown in Fig. 2) that accept the Y-adapter's connector

Installation is simple. First you mount the appropriate bracket or
the rear apron of your computer. Then you install the Y-adapter in
series with one of the existing internal disk-drive power con-
nectors. Next, you push the small power connector through the
hole in the bracket. That connector locks in position by means of
mounting ears molded on the connector. Finally, you connect the
cable from the 3¥%-inch disk drive to the controller card inyour main
computer.

With some PC’s you won't need to install the power cable in
series with the floppy power connector. The reason is that the
power supplies in some PC’s have four power connectors. So, if
you haven't used used all four, just connect the Y-adapter to one of
the unused connectors.

Use the bracket that causes the least inconvenience. for exam-
ple, if you use the relatively large standard rear-slot bracket shown
in Fig. 9, you must give up an entire slot. Some PC’s have only five
slots, 5O it may prove impossible for you to use the large bracket. In
that case you could use the smallest bracket, which will mount in
the small hole above the cassette port (yes, the original PC included
a cassette interface). The medium-size bracket can be used in the
extra slot above the keyboard port on an XT.

Clone panel layouts may vary, SO you might have to use the full-
size bracket and give up a slot. Or you might just cut a hole of your
own in which to mount the small bracket

Standard controller

To use the adapter, you must have an an IBM-type floppy-disk
controller, the kind with a 37-pin D-connector on the mounting
bracket (as shown in Fig. 3), in addition to the regqular floppy-disk

e i

FIG. 2—THE RETROFIT KIT is supplied with three different
brackets for the power sockets. Use the one that's most conve-
nient for you, but remember that the standard bracket (the large
one) may force you to give up use of one expansion slot.

FIG. 3—IBM-TYPE DISK CONTROLLER cards have a 37-pin sock-
et on the rear for external disk drives (C:and D:). The retrofit cable
must connect to that socket.

FIG. 4—THIS IS A TYPICAL CLONE INSTALLATION. The disk-
controller socket and the 3'z-inch drive’s power socket are on
adjacent brackets.

FIG. 5—CONNECTORS IN PLACE AND READY FOR USE. The 37-
pin D-connector is a real heavyweight, so be certain that you
tighten its mounting screws to ensure reliable operation.

connector. The IBM controller accommodates four floppy-disk driv-
es: two intemnal and two external drives Because the retrofit kit
connects to the computer via the external 37-pin connector, you
cannot use a multi-function disk controller (the kind that combines
a disk controller, serial and parallel ports, a joy-stick interface, and a
clock), because it has no connector for external floppy-disk drives.
The controller itself needn't be an actual IBM device; having the
external connector 1s the iImportant point

Figure 4 shows an XT clone ready to connect the 3%-inch disk
drive. The external disk-drive connector is adjacent to the miniature
power connector installed in the slot furthest left.

To install the 3V-inch drive, simply plug the appropriate con-
nectors from the drive in the appropriate jacks, as shown in Fig. 5.

Device driver

Before you can use your new drive you must tell the computer
that it’s there by adding a device driver to your computer’s CON-
FIG.SYS file, the configuration file that's automatically read when the
computer boots. For example, adding the line:

DEVICE =DRIVER.SYS /D:2

to your CONFIG.SYS file will allow you to accessa 3% inchdisk drive
as the next available drive (D: on an XT). IBM’s device driver comes
only with DOS versions 3.20 and 3.30. (Some clone manufacturer’s
drives are available with drivers that work under DOS 911 —Editor)
The device driver informs your computer that the 3%-inch drive
exists, establishes its physical parameters, including number of
tracks, sectors per track, number of heads, etc., and sets the drive's
logical designation (D, E;, F;, etc.)

el

MICRO-FLOPPY RETROFIT

Before | read the article, “Micro-
floppy Retrofit,” in the August 1987
ComputerDigest, | converted my
XT B: drive to 3% inch, using the

]

Toshiba ND-354A with their “Uni-
versal Kit.” The kit is very inexpen-

sive and complete, with accesso-
ries for the PC, XT, AT, Compaq2,
AT&T PC6300, and compatibles.
Besides costing less than the 1BM
kit, the Toshiba kit has the advan-
tage of not requiring the IBM’s 37-
in D-connector.

My original configuration was

Hone half high 5% FDD and one
R half-height 20-megabyte hard
8 disk. The half height 3Vs-inch disk
“Wdrive fits very nicely on top of my
JA: drive.

| am using PC DOS 3.2, and to
format 3% inch disks at 720K 1 used
the undocumented DOS com-
mand called DRIVPARM in my
CONFIG.SYS file. The complete
command is DRIVEPARM = /D:1/
F:2, where /D:1 is the drive
number (B:) and /F:2 indicates the
3Y-inch drive type.

Having a 3% inch drive is neces-
sary for me 1o maintain com-
patibility with the new 1BM
computers at work—and it is nice
to have 720K floppy storage.
RICHARD F. PELLY
Huntington Beach, CA

INPUT

Flopp

; -
" rior to 1977, computers relied on tape drives to memorize -

and store data. With the introduction of the disk drive, home-based comput-
ing became more convenient, compact and faster.

Early 5 14 diskettes were single-sided and their limited storage capacity, even at
160K, was considered more than adequate for the home-user. Of course that mindset
quickly changed and the upward memory spiral began in earnest, starting with the
introduction of double-sided disks.

In 1984 Apple introduced its first generation Macintosh computer. It featured a 3
1/2” floppy drive, with a 400K capacity, and 128K RAM already on-board. From incep-
tion, the 3 1/2” disk drive was expected to quickly dominate the marketplace. The
diskettes are sturdier, more compact and have a greater capacity. The micro-floppy, as
it’s called, has lived up to its promise, although versatility and variety seem to be guid-
ing many PC buyers into having both 3 1/2” and 5 1/4” drives installed in their systems.

Alongside performance speed, computer memory (RAM, hard drive and floppies)
has been on an upward, unremitting climb since the early days of personal computing.
By 1984, IBM's AT (Advanced Technology) model boasted a 1.2 megabyte floppy
drive (51/4”), eventually increased to 1.44mb (3 1/2”). In its turn, Apple launched the
1.44mb Superdrive. And last year, IBM bested this with a 2.8MB drive.

Disks As EXPENSIVE JEWELRY. Throughout this brief history, one thing hasn'’t
changed: the vulnerability of diskettes, whatever their size or capacity, to damage and
loss of data. If you value your data, the best general advice is to treat them like “expen-
sive jewelry”.

What that means in precise terms isn't always clear. Users may be unaware or
unsure of what exactly will damage the diskette or how a disk became hurt or corrupt-
ed in the first place. So the questions, the mysteries, persist.

Here is a list of the major sources of disk problems, the causes of which may go
undetected until it’s too late:

* THE IMAGE FADES OVER TIME. This is regarded as the most common problem. Reme-
dy: copy the file to another disk, “strengthening” the old data.

* SURFACE DAMAGE. The disk surface somehow becomes damaged, or a
flake of magnetic material gets momentarily stuck to the write head. The
result: information or data is incorrectly written to the disk.

* THAT OLD MAGNETISM. The disk may become demagnetized, leaving
a magnetic image on the disk surface, rendering it unreadable. Remedy:
keep your disks away from anything that is, or could be, magnetically-
charged, ie. paper-clips.

* CrowpEeD Houst. The disk may become damaged due to overcrowding your col-
lection of diskettes. Any severe pressure can cause data erasure.

* CAN'T STAND THE HEAT. Excessive temperature, especially heat, will damage the disk.

* FINGERPRINTS ON THE MAGNETIC DISK. This may cause the diskette to become
unreadable;

* VIRUS ALERT. A computer virus or poorly-written software program. The disk is
rendered temporarily unusable;

* FRAGMENTATION. This refers to the condition in which files are divided into pieces
and scattered around the disk. Fragmentation occurs naturally through frequent use:
creating, deleting and modifying files. It's undesirable because it slows the specd at
which data can be accessed.

ILL-ADVisED FORMATS. Another problem worth extended treatment is in disk for-
matting, which prepares the disk (a storage medium) for reading and writing. When
you Format a disk, the operating system (ie DOS) tests the disk

Yy 1992 5

e =
y Musings
History & Maintenance Tips

by Jack Singer

] to make sure all sectors are reliable, marks bad sectors (those that are scratched) and
creates internal “address tables” that it later uses to locate information. You must, of
course, format a disk before using it: otherwise it's akin to a blank sheet of paper with-
out lines or margins.

There’s some debate about using high density diskettes in a low-density drive. (Bear
in mind that latter-day computers have been designed to operate both high and low
density diskettes). What about buying cheap 720K diskettes, punching a hole in them,
and then formatting for high density, for example? Some people swear this is a neat
trick that works. Others have found that these diskettes develop a short shelf-life of

maybe a month or two. It may not be worth the risk.
WHEN CHEAP MEANS QUESTIONABLE. Never enough can be said about discouraging

people from using cheapie diskettes. Admittedly, there’s controversy here from those

who claim the inexpensive’ bulk diskettes are quite adequate, adding that they always

make back-ups anyhow, so that reduces the risk.
It's also true that buying ‘brand names’ doesn’t
TIPS 19
PREVENT

always result in owning quality disks. If you're
DISK

prepared to take the risk, or can reduce it substan-
DAMAGE
o

tially by regular back-ups, trial and error may be
* Don‘t Wﬂre 'm the dBke"e with

a safe solution. My own feeling is that I'd rather
not take chances.

All diskettes utilize the same materials in their
construction. The key difference between the
low- and high-end disks (forgetting price differ-
ences) is in the kind and quantity of magnetic
material used. Poor quality disks are especially

flimsy.
With the 5 14s, there are differences in the
sealing of the disk casing. Some brands are spot
sealed; others are glued. Opinions vary as
to which one is the best sealing
method, some preferring disks that
are glued. I've checked several
diskettes and found the more expen-
sive diskettes just as likely to be spot
sealed as the less expensive ones.

PREVENTION & UNDERSTANDING. All major
diskette problems can be prevented and
many corrected by special software, commer-
cial and shareware. These products are not
omnipotent. While they can move data from
bad to good disk sectors or reformat without
losing data, nothing can save a physically

e

;:;:‘f,r anything that's magnetic
of 5 m%isi‘:n? Pl
Seoa s S, don't put

* Keep your gisys

i stored
lyi ’ Ww‘ o,ve{crowding prrogg;:
of cold. cluding excessive heat

<
= Don’t handie the qu.jmpmun'

damaged disk. And you’d have to be a pro- :
grammer to correct truly bad data or cor- iy d?:k
rupted files, where the data integrity has Pr 4
- "rofect your softwg 3
'® against

been lost.
The best cure is prevention and under-

standing, and being able to manipulate,
your opcrating system.

Col'l'lpu\‘gf vﬁuSes b .
Up- fo-date yirys p,v 15ing an
two, ogram, or

